Theoretical and empirical convergence results for additive congruential random number generators (Q847181)

From MaRDI portal





scientific article; zbMATH DE number 5669155
Language Label Description Also known as
English
Theoretical and empirical convergence results for additive congruential random number generators
scientific article; zbMATH DE number 5669155

    Statements

    Theoretical and empirical convergence results for additive congruential random number generators (English)
    0 references
    12 February 2010
    0 references
    An additive congruential random number (ACORN) generator was defined by \textit{R.~S.~Wikramaratna} [J. Comput. Phys. 83, No.~1, 16--31 (1989; Zbl 0677.65003)]. The ACORN generators were examined by the author later, for example, see \textit{R.~S.~Wikramaratna} [J. Comput. Appl. Math. 216, No.~2, 371--387 (2008; Zbl 1145.65002)]. This paper is a continuation of the ACORN generators analysis, both theoretical and empirical. From the author's abstract: The results demonstrate that the ACORN generators are a reliable source of uniformly distributed pseudo-random numbers, and that in practice (as suggested by the theoretical convergence results) the quality of the ACORN sequences increases with increasing modulus and order.
    0 references
    pseudo-random number generator
    0 references
    algorithm
    0 references
    implementation
    0 references
    theoretical analysis
    0 references
    well-distributed sequences
    0 references
    empirical test
    0 references
    additive congruential random number (ACORN) generator
    0 references
    convergence
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers