Superconvergence and ultraconvergence of Newton-Cotes rules for supersingular integrals (Q848540)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Superconvergence and ultraconvergence of Newton-Cotes rules for supersingular integrals |
scientific article; zbMATH DE number 5677330
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Superconvergence and ultraconvergence of Newton-Cotes rules for supersingular integrals |
scientific article; zbMATH DE number 5677330 |
Statements
Superconvergence and ultraconvergence of Newton-Cotes rules for supersingular integrals (English)
0 references
4 March 2010
0 references
The main result of the paper consists of an error estimate of general (composite) Newton-Cotes rules for integrals of the form \(=\!\!\!\!\!\!\int{a}{b}f(x)(x-s)^{-(p+1)}dx\), \(s\in (a,b)\), \(p=2,3\dots\), where \(=\!\!\!\!\!\!\int\) is the Hadamard finite-part integral. From this error expansion the authors derive a modified quadrature rule with \(k\)th-order accuracy, though it may be invalid if \(s\) is close to the nodal points. Some numerical examples are shown at the end to confirm the theoretical analysis.
0 references
supersingular integral
0 references
Hadamard finite part integral
0 references
composite Newton-Cotes rule
0 references
superconvergence
0 references
ultraconvergence
0 references
error estimate
0 references
numerical examples
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0.9439144
0 references
0.9386896
0 references
0.93030846
0 references
0.9063807
0 references
0.90457493
0 references
0.9027368
0 references
0 references
0.8855876
0 references
0.8738862
0 references