Pricing early-exercise and discrete barrier options by Fourier-cosine series expansions (Q849055)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Pricing early-exercise and discrete barrier options by Fourier-cosine series expansions |
scientific article; zbMATH DE number 5674530
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Pricing early-exercise and discrete barrier options by Fourier-cosine series expansions |
scientific article; zbMATH DE number 5674530 |
Statements
Pricing early-exercise and discrete barrier options by Fourier-cosine series expansions (English)
0 references
24 February 2010
0 references
This paper generalizes the COS (method based on Fourier-cosine series expansion) pricing method to Bermudan and discrete-monitored barrier options. This method can be used whenever the characteristic function of the underlying price process is available, such as regular affine diffusion processes and, in particular, for exponential Lévy processes. The COS method exhibits an exponential convergence for density functions in \(C^{\infty}[a,b]\) and an impressive computational speed. It compares favorably to the CONV(convolution) method.
0 references
barrier options
0 references
pricing method
0 references
Fourier-cosine
0 references
series expansion
0 references
0 references
0 references
0.9214666
0 references
0.91041434
0 references
0.89867747
0 references
0.8955651
0 references
0 references
0.88492215
0 references