Laguerre functions on symmetric cones and recursion relations in the real case (Q849611)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Laguerre functions on symmetric cones and recursion relations in the real case
scientific article

    Statements

    Laguerre functions on symmetric cones and recursion relations in the real case (English)
    0 references
    0 references
    0 references
    0 references
    31 October 2006
    0 references
    The Laguerre polynomials over \(\mathbb R\) are defined by the formula \[ L^\nu_m(x)=\sum_{k=0}^m \frac{\Gamma(m+\nu)}{\Gamma (k+\nu)} \left( \begin{matrix} m\\ k\end{matrix}\right) (-x)^k , \] and the Laguerre functions are defined by \[ \ell_m^\nu(x)=e^{-x}L^\nu_m(2x). \] The following differential recursion relations hold: \[ \left( xD^2+\nu D-x\right) \ell_m^\nu (x) =-(2m+\nu)\ell_m^\nu (x), \] \[ \left( xD^2+(2x+\nu)D +(x+\nu)\right) \ell_m^\nu (x) =-2m(\nu+m-1)\ell_{m-1}^\nu (x), \] \[ \left( xD^2-(2x-\nu)D +(x-\nu)\right) \ell_m^\nu (x) =-2\ell_{m+1}^\nu (x). \] The article under review generalizes these formulas via the representation theory of \(\text{Sp}(n,\mathbb R)\) to Laguerre functions defined on the cone of positive definite real symmetric matrices, where \[ \text{Sp}(n,\mathbb R)=\left\{ g\in \text{SL}(2n,\mathbb R) : gjg^t=j\right\}, \] \[ j=\left( \begin{matrix} 0& I\\ -I & 0 \end{matrix}\right)\in \text{SL}(2n,\mathbb R) \quad \text{ and } I \text{ is an } n\times n \text{ identity matrix}. \] Let \(J=\text{Sym}(n,\mathbb R)\) be the Jordan algebra of symmetric real \(n\times n\) matrices, \(\Omega\) be an open selfdual cone of positive definite matrices, and \(T(\Omega)=\Omega +iJ\) be a tube domain. The authors discuss the action of the group \(\text{Sp}(n,\mathbb R)\) on \(T(\Omega)\) and derive differential recursion relations for the Laguerre functions on the cone \(\Omega\) of positive definite real matrices. The highest weight representations of the group \(\text{Sp}(n,\mathbb R)\) play an important role in this. Each such representation acts on a Hilbert space of holomorphic functions on the tube domain.
    0 references
    Laguerre polynomials and functions
    0 references
    Symmetric matrices
    0 references
    Tube domain
    0 references
    Highest weight representations
    0 references
    Recursion relations
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers