Weighted quadrature rules with weight function \(x^{-p} e^{-\frac {1}{x}}\) on \([0,\infty )\) (Q850210)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Weighted quadrature rules with weight function \(x^{-p} e^{-\frac {1}{x}}\) on \([0,\infty )\) |
scientific article; zbMATH DE number 5072684
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Weighted quadrature rules with weight function \(x^{-p} e^{-\frac {1}{x}}\) on \([0,\infty )\) |
scientific article; zbMATH DE number 5072684 |
Statements
Weighted quadrature rules with weight function \(x^{-p} e^{-\frac {1}{x}}\) on \([0,\infty )\) (English)
0 references
15 November 2006
0 references
The authors introduce an analytical class of weighted quadrature rules whose weight function is as \(w(x, p)= x^{-p}e^{- \frac{1}{x}}\) on \([0, \infty)\). Some numerical examples are given.
0 references
quadrature and cubature formulas
0 references
0 references