On unit roots for spatial autoregressive models (Q860343)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On unit roots for spatial autoregressive models |
scientific article; zbMATH DE number 5083106
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On unit roots for spatial autoregressive models |
scientific article; zbMATH DE number 5083106 |
Statements
On unit roots for spatial autoregressive models (English)
0 references
9 January 2007
0 references
We consider the unit root problem for one rather simple autoregressive model, \[ Y_{t,s}=aY_{t-1,s}+bY_{t,s-1}+\varepsilon_{t,s}, \] on a two-dimensional lattice. We show that the growth of variance of \(Y_{t,s}\) is essentially different from the corresponding growth in the unit root case for AR(1) or AR(2) time series models. We also show that the dimension of the lattice plays an important role: the growth of variance of an autoregressive field on a d-dimensional lattice is different for \(d=2,3\) and \(d\geq 4\).
0 references
autoregressive models
0 references
unit root
0 references
random fields
0 references