Existence of \(n\) solutions and/or positive solutions to a semipositone elastic beam equation (Q860726)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Existence of \(n\) solutions and/or positive solutions to a semipositone elastic beam equation |
scientific article; zbMATH DE number 5083402
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Existence of \(n\) solutions and/or positive solutions to a semipositone elastic beam equation |
scientific article; zbMATH DE number 5083402 |
Statements
Existence of \(n\) solutions and/or positive solutions to a semipositone elastic beam equation (English)
0 references
9 January 2007
0 references
This paper considers nonlinear fourth order boundary value problems of the form \[ u^{(4)}(t)=f(t,u(t),u''(t)), \] \[ u(0)=u(1)=u''(0)=u''(1)=0. \] Under certain conditions on the nonlinearity \(f\), it is proven that the problem has at least \(n\) solutions, where \(n\) is any positive integer, under additional conditions these solutions are positive. The proofs of these results are based on the Krasnosel'skii fixed point theorem for compact mappings in subsets of cones.
0 references
nonlinear boundary value problem
0 references
fourth-order
0 references
multiplicity
0 references
0 references
0 references
0 references