Finite dimensionality of the global attractors for von Karman equations with nonlinear interior dissipation (Q860733)

From MaRDI portal





scientific article; zbMATH DE number 5083407
Language Label Description Also known as
English
Finite dimensionality of the global attractors for von Karman equations with nonlinear interior dissipation
scientific article; zbMATH DE number 5083407

    Statements

    Finite dimensionality of the global attractors for von Karman equations with nonlinear interior dissipation (English)
    0 references
    0 references
    9 January 2007
    0 references
    The paper deals with the regularity and finite dimensionality of the global attractor for the dynamic von Kármán system \[ \begin{aligned} &w_{tt}+\triangle^2w+g(w_t)=[\mathcal{F}(w),w],\;\triangle^2\mathcal{F}(w)=-[w,w]\;\text{ in}\;(0,+\infty)\times \Omega,\\ &w=\frac{\partial w}{\partial \nu}=\mathcal{F}=\frac{\partial \mathcal{F}}{\partial \nu}=0\;\text{ on}\;(0,+\infty)\times \;\partial\Omega,\;w(0,.)=w_0,\;w_t(0,.)=w_1\;\text{ in}\;\Omega.\end{aligned} \] The damping function \(g\in C^1(\mathbb R)\) satisfies \(g(0)=0\), \(0<m\leq g'(s),\;g'(s)\leq M(1+sg(s))\) for all \(s\in \mathbb R.\) The boundedness of the global attractor in the space \(\mathcal{H}^1=(H^4\cap H^2_0)\times H^2_0\). Further, the finiteness of the fractal dimension is proved.
    0 references
    von Karman equations
    0 references
    global attractors
    0 references
    regularity of attractors
    0 references
    finite dimensionality of attractors
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references