The planar Ramsey number \(PR(K_4-e,K_5\)) (Q861805)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The planar Ramsey number \(PR(K_4-e,K_5\)) |
scientific article; zbMATH DE number 5121358
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The planar Ramsey number \(PR(K_4-e,K_5\)) |
scientific article; zbMATH DE number 5121358 |
Statements
The planar Ramsey number \(PR(K_4-e,K_5\)) (English)
0 references
2 February 2007
0 references
The planar Ramsey number \(PR(H_1,H_2)\) is the smallest integer \(n\) such that any planar graph on \(n\) vertices contains a copy of \(H_1\) or its complement contains a copy of \(H_2\). In the paper it is shown that \(PR(K_4-e,K_5)=14\); thus, \(PR(K_4-e,K_5)<R(K_4-e,K_5)=16\).
0 references
planar graph
0 references
Ramsey number
0 references
forbidden subgraph
0 references