Shintani's prehomogeneous zeta functions and multiple sine functions (Q861999)

From MaRDI portal





scientific article; zbMATH DE number 5121522
Language Label Description Also known as
English
Shintani's prehomogeneous zeta functions and multiple sine functions
scientific article; zbMATH DE number 5121522

    Statements

    Shintani's prehomogeneous zeta functions and multiple sine functions (English)
    0 references
    0 references
    2 February 2007
    0 references
    For \(n\geq 1\) let \(Z_n(s)\) be Shintani's prehomogeneous zeta function associated to the space of symmetric matrices. The author proves that for \(n\equiv 1\pmod 4\), \(n\neq 1\), the function \( Z_n(s)\) has a simple zero at \(s=0\), and \[ Z_n'(0)=-(-4)^{\frac{1-n}{4}}(\zeta(-1)\zeta(-3)\dots \zeta(-(n-2)))^2\log\left(\prod_{k=1}^{\frac{n-1}{4}}S_{\frac{n+1}{2}}(k)^{a(\frac{n+1}{2},k)}\right), \] where \(S_r(x)\) is the multiple sine function and \(a(2m+1,k)\) are certain numbers explicitly defined in the paper.
    0 references
    Shintani's prehomogeneous zeta function
    0 references
    multiple sine function
    0 references

    Identifiers