Parabolic initial boundary value problems in nonsmooth cylinders with data in anisotropic Besov spaces (Q862060)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Parabolic initial boundary value problems in nonsmooth cylinders with data in anisotropic Besov spaces |
scientific article; zbMATH DE number 5121800
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Parabolic initial boundary value problems in nonsmooth cylinders with data in anisotropic Besov spaces |
scientific article; zbMATH DE number 5121800 |
Statements
Parabolic initial boundary value problems in nonsmooth cylinders with data in anisotropic Besov spaces (English)
0 references
5 February 2007
0 references
The authors prove sharp well-posedness results for the heat equation in arbitrary Lipschitz cylinders, when the boundary data are in parabolic Besov spaces and zero initial conditions. These results are proved by using the method of layer potentials extending \textit{R. M. Brown}'s ones in [Trans. Am. Math. Soc. 320, No. 1, 1--52 (1990; Zbl 0714.35037)].
0 references
anisotropic Sobolev spaces
0 references
Besov spaces
0 references
Heat operator
0 references
Lipschitz cylinder
0 references
Parabolic layer potentials
0 references
Initial boundary value problems
0 references
0.9197507
0 references
0.8955349
0 references
0.8889719
0 references
0.88654494
0 references