The global attractor of the damped, forced generalized Korteweg de Vries-Benjamin-Ono equation in \(L^2\) (Q862085)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The global attractor of the damped, forced generalized Korteweg de Vries-Benjamin-Ono equation in \(L^2\) |
scientific article; zbMATH DE number 5121853
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The global attractor of the damped, forced generalized Korteweg de Vries-Benjamin-Ono equation in \(L^2\) |
scientific article; zbMATH DE number 5121853 |
Statements
The global attractor of the damped, forced generalized Korteweg de Vries-Benjamin-Ono equation in \(L^2\) (English)
0 references
5 February 2007
0 references
The goal of this paper is to study existence and regularity of the global attractor of the damped, forced generalized KdV-Benjamin-Ono equation in \(L^2(\mathbb{R})\), \[ \partial_t u+ \gamma\cdot{\mathcal H}\partial^2_x u+ \beta\partial^3_x u+\mu\partial_x u+\lambda u+ u\partial_x u= f,\tag{1} \] \[ u(x,0)= u_0(x)\in L^2(\mathbb{R}),\quad (x,t)\in \mathbb{R}\times\mathbb{R},\tag{2} \] where \(\gamma\), \(\beta\), \(\mu\), \(\lambda\) are real constants and \(\gamma\cdot\beta\neq 0\), \(\lambda> 0\). The time-independent function \(f\in L^2(\mathbb{R})\), and \({\mathcal H}\) denotes the Hilbert transform \[ {\mathcal H}\theta(x)= \text{p.v. }{1\over\pi} \int {\theta(x- y)\over y}\,dy, \] where p.v. denotes the Cauchy principal value. Moreover, the authors show that the global attractor of (1)--(2) is actually a compact set in \(H^3(\mathbb{R})\).
0 references
global attractor
0 references
Fourier restriction norm
0 references
damping system
0 references
asymptotic smoothing
0 references
0.9539952
0 references
0.92936546
0 references
0.92740047
0 references
0.92595243
0 references
0.9248836
0 references
0.92304313
0 references
0.9207819
0 references
0.9191457
0 references