On the distribution of lattice points on spheres and level surfaces of polynomials (Q863957)

From MaRDI portal





scientific article; zbMATH DE number 5124506
Language Label Description Also known as
English
On the distribution of lattice points on spheres and level surfaces of polynomials
scientific article; zbMATH DE number 5124506

    Statements

    On the distribution of lattice points on spheres and level surfaces of polynomials (English)
    0 references
    0 references
    12 February 2007
    0 references
    The author considers the irregularities of distribution of lattice points on the sphere \(S^{n-1}\) and on the level surface \(S_p\) of the polynomial \(p\). For \(\lambda\in \mathbb N\), let \(Z_{\lambda}\) be the set of lattice points of length \(\lambda^{1/2}\) projected to \(S^{n-1}\), \(N_{\lambda}=| Z_{\lambda}| \). For \(0\leq a<1\) and a unit vector \(\xi\), define the spherical cap \(C_{a,\xi}=\{x\in S^{n-1}:x\cdot \xi\geq a\}\) and the discrepancy \[ D_n(\xi, \lambda)=| Z_{\lambda}\cap C_{a,\xi}| -N_{\lambda}\sigma(C_{a,\xi}), \] where \(\sigma\) denotes the normalized surface area measure on \(S^{n-1}\). It is shown that for \(n\geq 4\), a diophantine point \(\xi\in S^{n-1}\), that is, \(\| q\xi\| =\min_{m\in Z^{n-1}}| q\xi- m| \geq C_{\varepsilon}q^{-1/(n-1)- \varepsilon}\) for all \(q\in \mathbb N\), \(| D_n(\xi , \lambda)| \leq C_{\xi,\varepsilon}\lambda^{(n-1)/4+\varepsilon}\). Moreover, let \(p(m)=p(m_1,\ldots m_n)\) be a positive homogeneous integral polynomial of degree \(d\), and let \(S_p\) be the unit level surface of \(p\). For a positive integer \(\lambda\), let \(Z_{p,\lambda}=\{\lambda^{-1/d}m: m\in Z^n, p(m)=\lambda\}\), \(N_{p,\lambda}=| Z_{p,\lambda}| \) and define the discrepancy \[ D_p(\xi,\lambda)=| Z_{p,\lambda}\cap C_{a,\xi}| -N_{p,\lambda} \sigma_p(C_{a,\xi}), \] where \(C_{a,\xi}=\{x\in S_p:x\cdot \xi\geq a\}\) for \(a>0\) , \(\sigma_p\) denotes the normalized surface area measure on \(S_p\). It is shown that for \(n>(d-1)2^d\) and a diophantine point \(\xi\in S^{n-1}\), there exists an \(\eta >0\) such that \(| D_p(\xi, \lambda)| \leq C_{p,\xi}\lambda^{n/d-1-\eta}\).
    0 references
    0 references
    discrepancy
    0 references
    lattice points
    0 references
    exponential sums
    0 references

    Identifiers