Extension to maximal semidefinite invariant subspaces for hyponormal matrices in indefinite inner products (Q864560)

From MaRDI portal





scientific article; zbMATH DE number 5123961
Language Label Description Also known as
English
Extension to maximal semidefinite invariant subspaces for hyponormal matrices in indefinite inner products
scientific article; zbMATH DE number 5123961

    Statements

    Extension to maximal semidefinite invariant subspaces for hyponormal matrices in indefinite inner products (English)
    0 references
    0 references
    0 references
    0 references
    12 February 2007
    0 references
    Suppose the vector space \({\mathbb C}^n\) is equipped with the standard inner product \(\langle\cdot,\cdot\rangle\). Let \(H\) be an invertible \(n\times n\) matrix, then \([x,y]=\langle Hx,y\rangle\) for all \(x,y\in{\mathbb C}^n\) defines an indefinite inner product. A subspace \({\mathcal M}\subset{\mathbb C}^n\) is called \(H\)-nonnegative if \([x,y]\geq0\) for every \(x\in{\mathcal M}\). The authors unify and complete the theory of extensions of semidefinite subspaces for \(H\)-normal and \(H\)-hyponormal subspaces culminating in a theorem that combines results of previous papers [cf. \textit{C. Mehl, A. C. M. Ran} and \textit{L. Rodman}, Electron. J. Linear Algebra 11, 192--204 (2004; Zbl 1066.15030)].
    0 references

    Identifiers