Lower bounds of Copson type for Hausdorff matrices (Q865462)

From MaRDI portal





scientific article; zbMATH DE number 5126063
Language Label Description Also known as
English
Lower bounds of Copson type for Hausdorff matrices
scientific article; zbMATH DE number 5126063

    Statements

    Lower bounds of Copson type for Hausdorff matrices (English)
    0 references
    0 references
    0 references
    14 February 2007
    0 references
    Let \(A=\left( a_{m,n}\right) _{m,n\geq 0}\) be a nonnegative matrix. For \( 1\leq p\leq \infty \) and \(0<q\leq p\) let \(L_{p,q}(A)\) be the supremum of the numbers \(L\) satisfying the inequality: \[ \left( \sum_{m=0}^{\infty }\left( \sum_{n=0}^{\infty }a_{m,n}x_{n}\right) ^{q}\right) ^{1/q}\geq L\left( \sum_{n=0}^{\infty }x_{n}^{p}\right) ^{1/p}, \] whenever \(\left\{ x_{n}\right\} _{n=0}^{\infty }\in \ell ^{p}\) with \( x_{n}\geq 0\) for all \(n\geq 0\). The authors give the exact value of \( L_{p,q}(A)\) in the case when \(A\) is a Hausdorff matrix. Applications to Cesàro matrices, Hölder matrics, gamma matrices, and generalized Euler matrices are given.
    0 references
    lower bound
    0 references
    Cesàro matrices
    0 references
    Hölder matrices
    0 references
    gamma matrices
    0 references
    generalized Euler matrices
    0 references
    matrix inequality
    0 references
    nonnegative matrix
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references