Upper bounds for singular perturbation problems involving gradient fields (Q866484)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Upper bounds for singular perturbation problems involving gradient fields |
scientific article; zbMATH DE number 5129002
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Upper bounds for singular perturbation problems involving gradient fields |
scientific article; zbMATH DE number 5129002 |
Statements
Upper bounds for singular perturbation problems involving gradient fields (English)
0 references
20 February 2007
0 references
Summary: We prove an upper bound for the Aviles--Giga problem, which involves the minimization of the energy \[ E_\varepsilon(v)=\varepsilon\int_\Omega |\nabla^2v|^2\,dx+\varepsilon^{-1}\int_\Omega (1-|\nabla v|^2)^2\,dx \] over \(v\in H^2(\Omega)\), where \(\varepsilon>0\) is a small parameter. Given \(v\in W^{1,\infty}(\Omega)\) such that \(\nabla v\in\text{BV}\) and \(|\nabla v| =1\) a.e., we construct a family \(\{v_\varepsilon\}\) satisfying \(v_\varepsilon\to v\) in \(W^{1,p}(\Omega)\) and \[ E_\varepsilon(v_\varepsilon)\to \frac 13 \int_{J_{\nabla v}}|\nabla^+v-\nabla^-v|^3\,d\mathcal H^{N-1} \] as \(\varepsilon\) goes to 0.
0 references
0.92904484
0 references
0.91090333
0 references
0.9066924
0 references
0.9059284
0 references
0.8993427
0 references
0.8954143
0 references
0.8950376
0 references
0.8895267
0 references