Proof of Böttcher and Wenzel's conjecture on commutator norms for 3-by-3 matrices (Q875018)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Proof of Böttcher and Wenzel's conjecture on commutator norms for 3-by-3 matrices |
scientific article; zbMATH DE number 5141642
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Proof of Böttcher and Wenzel's conjecture on commutator norms for 3-by-3 matrices |
scientific article; zbMATH DE number 5141642 |
Statements
Proof of Böttcher and Wenzel's conjecture on commutator norms for 3-by-3 matrices (English)
0 references
10 April 2007
0 references
The author proves that \[ \left| \left| AX-XA\right| \right| _{F}\leq \sqrt{2} \left| \left| A\right| \right| _{F}\left| \left| X\right| \right| _{F} \] for all \(3\times 3\) matrices, where \(\left| \left| \cdot \right| \right| _{F}\) is the Frobenius norm. This inequality is a particular case of the general inequality given in the conjecture of \textit{A. Böttcher} and \textit{D. Wenzel} [ibid. 403, 216--228 (2005; Zbl 1077.15020)].
0 references
Frobenius norm
0 references
Kronecker product
0 references
sum of squares
0 references
inequality
0 references
0 references
0.85263735
0 references
0.85139877
0 references
0.8452009
0 references
0 references
0 references
0.8337811
0 references