Extreme eigenvalues of nonregular graphs (Q875951)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Extreme eigenvalues of nonregular graphs |
scientific article; zbMATH DE number 5143585
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Extreme eigenvalues of nonregular graphs |
scientific article; zbMATH DE number 5143585 |
Statements
Extreme eigenvalues of nonregular graphs (English)
0 references
16 April 2007
0 references
This paper deals with the greatest eigenvalue of a nonregular graph. Let \(G\) be a connected graph with vertex set \(\{1,2,\dots,n\}\), maximum degree \(\Delta\) and minimum degree \(\delta\). Let \(\lambda_1\) be the largest eigenvalue of the adjacency matrix \(A\) of \(G\). The authors obtain a lower bound of \(\Delta - \lambda_1\). Specifically, they prove for a connected nonregular graph with diameter \(D\), that \[ \Delta-\lambda_1 > \frac{n\Delta-2m}{n(D(n\Delta-2m)+1)}, \] where \(m\) is the number of edges; and hence \[ \Delta-\lambda_1 > \frac{n\Delta-2m}{n(D(n\Delta-2m)+1)}\geq \frac{1}{n(D+1)}. \]
0 references
spectral radius
0 references
nonregular graph
0 references
eigenvalues
0 references
0.94881266
0 references
0.9439104
0 references
0.9423981
0 references
0.9419513
0 references
0 references
0.9417318
0 references
0.94102323
0 references
0.93208283
0 references
0.9300561
0 references