Critical point theory for nonsmooth functionals (Q876949)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Critical point theory for nonsmooth functionals |
scientific article; zbMATH DE number 5144902
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Critical point theory for nonsmooth functionals |
scientific article; zbMATH DE number 5144902 |
Statements
Critical point theory for nonsmooth functionals (English)
0 references
19 April 2007
0 references
The authors develop critical point theory for nonsmooth potentials \(f\colon H^1_0(\Omega)\longrightarrow\mathbb{R}\) of the form \(f(u)=\frac{1}{2}\int_{\Omega}\sum\limits_{i,j=1}^na_{ij}(x,u)D_iuD_ju\,dx-\int_{\Omega}G(x,u)\,dx\). First, the corresponding deformation lemma is proved. Next, a saddle point theorem is proved for functionals defined on a product space.
0 references
deformation lemma
0 references
saddle point theorem
0 references
quasilinear equation
0 references
0 references
0.99042606
0 references
0.9675111
0 references
0.9631103
0 references
0.96173817
0 references
0 references
0.9390897
0 references