An extension of a result of Szegő on eigenvalues of Toeplitz matrices (Q877901)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: An extension of a result of Szegő on eigenvalues of Toeplitz matrices |
scientific article; zbMATH DE number 5149356
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | An extension of a result of Szegő on eigenvalues of Toeplitz matrices |
scientific article; zbMATH DE number 5149356 |
Statements
An extension of a result of Szegő on eigenvalues of Toeplitz matrices (English)
0 references
4 May 2007
0 references
The authors of the paper under review study the asymptotic behavior of eigenvalues of Toeplitz matrices. In particular, they find asymptotic behavior of the eigenvalues of Toeplitz matrices \(T_N(g)\), with \(g(e^{i\theta})=(1-\cos\theta)^\alpha f(e^{i\theta})\), where \(f\) is a regular function. In particular, they obtain the order of the smallest and the largest eigenvalues.
0 references
Toeplitz matrices
0 references
eigenvalues
0 references
0 references