On a zeroes of Mittag-Leffler functions with parameter \(\rho <1/2\) (Q879175)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On a zeroes of Mittag-Leffler functions with parameter \(\rho <1/2\) |
scientific article; zbMATH DE number 5150201
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On a zeroes of Mittag-Leffler functions with parameter \(\rho <1/2\) |
scientific article; zbMATH DE number 5150201 |
Statements
On a zeroes of Mittag-Leffler functions with parameter \(\rho <1/2\) (English)
0 references
8 May 2007
0 references
In the paper the author obtained the best upper estimate of the parameter \(\mu\), for which the Mittag -- Leffler functions \(E_\varrho(z,\mu)\) at \(\varrho< 1/2\) have only negative and simple zeros in the complex plane. The main result of the paper is this theorem: Let \(0<\varrho<1/2\) and \(\mu\geq 0,9+(\varrho^2\ln 2)^{-1}-\varrho^{-1}\). There the function \(E_\varrho(z,\mu)\) has zeros in \(\mathbb C-\mathbb R\).
0 references
Mittag-Leffler functions
0 references
0 references
0.95098567
0 references
0.9305854
0 references
0.91973376
0 references
0.9147936
0 references
0.91143215
0 references
0.90389764
0 references