Lebesgue constants of Gaussian cardinal interpolation operators from \(\ell(\mathbb Z)\) into \(L(\mathbb R)\) (Q879180)

From MaRDI portal





scientific article; zbMATH DE number 5150203
Language Label Description Also known as
English
Lebesgue constants of Gaussian cardinal interpolation operators from \(\ell(\mathbb Z)\) into \(L(\mathbb R)\)
scientific article; zbMATH DE number 5150203

    Statements

    Lebesgue constants of Gaussian cardinal interpolation operators from \(\ell(\mathbb Z)\) into \(L(\mathbb R)\) (English)
    0 references
    0 references
    0 references
    8 May 2007
    0 references
    The Gaussian cardinal interpolation operator is a linear operator \(\mathcal{L}_{\lambda}:\ell^{p}(Z)\rightarrow L^{p}(\mathbb{R}),\) \((1\leq p\leq\infty)\) defined by the equation: \[ (\mathcal{L}_{\lambda}y)(x)=\sum_{j\in\mathbb{Z}}L_{\lambda}(x-j),\;y=\{y_{j}\}_{j\in\mathbb{Z}}\in\ell^{p},\;x\in\mathbb{R}, \] where \[ L_{\lambda}(t):=\sum_{j\in\mathbb{Z}}a_{i}e^{\lambda(t-j)^{2}},\;t\in \mathbb{R} \] are the fundamental functions, uniquely determined by some interpolation conditions. In the case \(p=1,\) the authors prove the following asymptotic behavior for Lebesgue constants (i.e., the norm \(\left\| \mathcal{L}_{\lambda}\right\|_{1})\) of \(\mathcal{L}_{\lambda}\): \[ \left\| \mathcal{L}_{\lambda}\right\|_{1}=\frac{4}{\pi^{2}}\log\frac {1}{\lambda}+O(1)\;\text{as\;}\lambda\rightarrow0. \] This result improves the results of \textit{S. D. Riemenschneider} and \textit{N. Sivakumar} [Adv. Comput. Math. 11, 229--251 (1999; Zbl 0939.41002)].
    0 references
    Gaussian cardinal interpolation
    0 references
    Lebesgue constants
    0 references

    Identifiers