Immersed hypersurfaces in the unit sphere \(S^{m+1}\) with constant Blaschke eigenvalues (Q884929)

From MaRDI portal





scientific article; zbMATH DE number 5162331
Language Label Description Also known as
English
Immersed hypersurfaces in the unit sphere \(S^{m+1}\) with constant Blaschke eigenvalues
scientific article; zbMATH DE number 5162331

    Statements

    Immersed hypersurfaces in the unit sphere \(S^{m+1}\) with constant Blaschke eigenvalues (English)
    0 references
    0 references
    0 references
    7 June 2007
    0 references
    Let \(x:M^m \rightarrow S^{m+p}\) be an immersion into the sphere \(S^{m+p}\) without umbilic points. One can introduce the following Möbius invariants: The Möbius metric \(g,\) the Möbius form \(\phi,\) the Blaschke tensor \(A,\) and the Möbius second fundamental form \(B.\) The eigenvalues of \(B\) are called \textit{Möbius principal curvatures,} the eigenvalues of \(A\) are called \textit{Blaschke eigenvalues.} In this paper a classification of hypersurfaces \(x:M^{m}\rightarrow S^{m+1}\) with vanishing Möbius form and two constant and distinct Blaschke eigenvalues is presented. Another result is the classification of immersed and umbilic free hypersurfaces in \(S^4\) with vanishing Möbius form and constant Blaschke eigenvalues.
    0 references
    Möbius form
    0 references
    Blaschke tensor
    0 references
    Blaschke eigenvalues, Möbius metric, Möbius second fundamental form
    0 references

    Identifiers