Positive real matrices in indefinite inner product spaces and invariant maximal semidefinite subspaces (Q886137)

From MaRDI portal





scientific article; zbMATH DE number 5167480
Language Label Description Also known as
English
Positive real matrices in indefinite inner product spaces and invariant maximal semidefinite subspaces
scientific article; zbMATH DE number 5167480

    Statements

    Positive real matrices in indefinite inner product spaces and invariant maximal semidefinite subspaces (English)
    0 references
    0 references
    0 references
    0 references
    26 June 2007
    0 references
    Let \(H\) be an invertible Hermitian \(n\times n\) matrix with entries in \(\mathbb{C}\). Then the mapping \[ x,y\mapsto \langle Hx,y\rangle, \quad x,y\in\mathbb{C}^n, \] defines an indefinite inner product on \(\mathbb{C}^{n\times n}\). An \(n\times n\) matrix \(A\) is called positive real in the \(H\)-inner product, or \(H\)-positive real, if \(\text{Re}\langle HAx,x\rangle\geq0\), for all \(x\in\mathbb{C}^n\) or, equivalently, if the `real positive matrix' \(P :=\frac{1}{2}(HA+A^\star H)\) is positive semidefinite. The matrix \(A\) is called strictly \(H\)-positive real if \(\text{Re}\langle HAx,x\rangle>0\) for all \(x\), or \(P>0\). The authors give an explicit construction for semidefinite subspaces in the complex as well as in the real case.
    0 references
    indefinite inner products
    0 references
    semidefinite invariant subspaces
    0 references
    positive real matrices
    0 references
    Hermitian matrix
    0 references

    Identifiers