Positive real matrices in indefinite inner product spaces and invariant maximal semidefinite subspaces (Q886137)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Positive real matrices in indefinite inner product spaces and invariant maximal semidefinite subspaces |
scientific article; zbMATH DE number 5167480
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Positive real matrices in indefinite inner product spaces and invariant maximal semidefinite subspaces |
scientific article; zbMATH DE number 5167480 |
Statements
Positive real matrices in indefinite inner product spaces and invariant maximal semidefinite subspaces (English)
0 references
26 June 2007
0 references
Let \(H\) be an invertible Hermitian \(n\times n\) matrix with entries in \(\mathbb{C}\). Then the mapping \[ x,y\mapsto \langle Hx,y\rangle, \quad x,y\in\mathbb{C}^n, \] defines an indefinite inner product on \(\mathbb{C}^{n\times n}\). An \(n\times n\) matrix \(A\) is called positive real in the \(H\)-inner product, or \(H\)-positive real, if \(\text{Re}\langle HAx,x\rangle\geq0\), for all \(x\in\mathbb{C}^n\) or, equivalently, if the `real positive matrix' \(P :=\frac{1}{2}(HA+A^\star H)\) is positive semidefinite. The matrix \(A\) is called strictly \(H\)-positive real if \(\text{Re}\langle HAx,x\rangle>0\) for all \(x\), or \(P>0\). The authors give an explicit construction for semidefinite subspaces in the complex as well as in the real case.
0 references
indefinite inner products
0 references
semidefinite invariant subspaces
0 references
positive real matrices
0 references
Hermitian matrix
0 references
0 references
0 references