On condiagonalizable matrices (Q886147)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On condiagonalizable matrices |
scientific article; zbMATH DE number 5167489
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On condiagonalizable matrices |
scientific article; zbMATH DE number 5167489 |
Statements
On condiagonalizable matrices (English)
0 references
26 June 2007
0 references
Two matrices \(A,B\in M_{n}(\mathbb{C})\) are `consimilar' if there exists a nonsingular matrix \(S\) such that \(A=SB\overline{S}^{-1}\) [see \textit{R. A. Horn} and \textit{C. R. Johnson}, Matrix analysis, Cambridge University Press (1985; Zbl 0576.15001)]. The author defines \(A\) to be `condiagonalizable' if \(\bar{A}A\) is similar in the usual sense to a diagonal matrix. This differs from the definition given in the reference above. The author shows that if \(A\) is condiagonalizable then \(A\) is consimilar to a block diagonal matrix whose diagonal blocks are either real \(1\times1\) blocks or \(2\times2\) blocks of the forms \[ \left[ \begin{matrix} 0 & \bar{\mu}\\ \mu & 0 \end{matrix} \right] \quad\text{or}\quad \left[ \begin{matrix} 0 & 0\\ 1 & 0 \end{matrix} \right] . \]
0 references
consimilarity
0 references
coneigenvalue
0 references
coninvariant subspace
0 references
0.9284154
0 references
0.91173995
0 references
0.90823025
0 references
0.9033276
0 references
0 references
0 references
0.89655393
0 references