A posteriori error estimates for nonconforming streamline-diffusion finite element methods for convection-diffusion problems (Q895653)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A posteriori error estimates for nonconforming streamline-diffusion finite element methods for convection-diffusion problems |
scientific article; zbMATH DE number 6516323
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A posteriori error estimates for nonconforming streamline-diffusion finite element methods for convection-diffusion problems |
scientific article; zbMATH DE number 6516323 |
Statements
A posteriori error estimates for nonconforming streamline-diffusion finite element methods for convection-diffusion problems (English)
0 references
4 December 2015
0 references
For the convection-diffusion problem \[ -\varepsilon \Delta u + b \nabla u + c u = f, \quad \Omega \in \mathbb R^{2}, \] with homogeneous boundary conditions, the analysis of an a posteriori error estimation of the approximate solutions is given. The authors obtain solutions \(u_{h}\) using the finite element method based on the Crouzeix-Raviart space of the polynomials with degree less or equal to \( 1 \) on each element \( K \) of the grid.
0 references
stationary convection-diffusion equation
0 references
finite element method
0 references
a posteriori error estimation
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0.9611237
0 references
0.9580709
0 references
0.94428897
0 references
0 references
0.93733525
0 references
0 references
0.93576664
0 references
0.9332774
0 references
0.93213326
0 references