From classical to discrete gravity through exponential non-standard Lagrangians in general relativity (Q901439)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: From classical to discrete gravity through exponential non-standard Lagrangians in general relativity |
scientific article; zbMATH DE number 6528847
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | From classical to discrete gravity through exponential non-standard Lagrangians in general relativity |
scientific article; zbMATH DE number 6528847 |
Statements
From classical to discrete gravity through exponential non-standard Lagrangians in general relativity (English)
0 references
12 January 2016
0 references
Summary: Recently, non-standard Lagrangians have gained a growing importance in theoretical physics and in the theory of non-linear differential equations. However, their formulations and implications in general relativity are still in their infancies despite some advances in contemporary cosmology. The main aim of this paper is to fill the gap. Though non-standard Lagrangians may be defined by a multitude form, in this paper, we considered the exponential type. One basic feature of exponential non-standard Lagrangians concerns the modified Euler-Lagrange equation obtained from the standard variational analysis. Accordingly, when applied to spacetime geometries, one unsurprisingly expects modified geodesic equations. However, when taking into account the time-like paths parameterization constraint, remarkably, it was observed that mutually discrete gravity and discrete spacetime emerge in the theory. Two different independent cases were obtained: A geometrical manifold with new spacetime coordinates augmented by a metric signature change and a geometrical manifold characterized by a discretized spacetime metric. Both cases give raise to Einstein's field equations yet the gravity is discretized and originated from ``spacetime discreteness''. A number of mathematical and physical implications of these results were discussed though this paper and perspectives are given accordingly.
0 references
non-standard Lagrangians
0 references
general relativity
0 references
modified geodesic equations
0 references
discrete gravity
0 references
discrete spacetime
0 references
quantized cosmological constant
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references