Periodic boundary value problems for nonlinear impulsive evolution equations on Banach spaces (Q907661)

From MaRDI portal





scientific article; zbMATH DE number 6535616
Language Label Description Also known as
English
Periodic boundary value problems for nonlinear impulsive evolution equations on Banach spaces
scientific article; zbMATH DE number 6535616

    Statements

    Periodic boundary value problems for nonlinear impulsive evolution equations on Banach spaces (English)
    0 references
    0 references
    0 references
    26 January 2016
    0 references
    The authors consider two nonlinear equations with impulsive evolution in a Banach space \(X\) as follows \[ \begin{alignedat}{3} u'(t)&=Au(t)+f(t,u(t)),&& t\in (s_{i},t_{i+1}],\quad &i=0,1,\dots ,m,\\ u(t)&=S(t-t_{i})g_{i}(t,u(t)),\qquad&&t\in (t_{i},s_{i}],\quad &i=1,2,\dots,m,\\ u(0)&=U(T),\end{alignedat} \] and \[ \begin{alignedat}{3} u'(t)&=Au(t)+f(t,u(t)),&& t\in (s_{i},t_{i+1}],\quad &i=0,1,\dots,m,\\ u(t)&=h_{i}+S(t_{i})\int_{t_{i}}^{t}g_{i}(s,u(s))ds,\qquad &&t\in (t_{i},s_{i}],\quad &i=1,2,\dots,m,\\ u(0)&=U(T), \end{alignedat} \] where \(A\) is the generator of a \(C_0\)-semigroup in \(X, f\) and g are some continuous functions on each interval. Using Krasnoselskii's and Schaefer's fixed point theorems, the authors prove the existence of a solution.
    0 references
    nonlinear evolution equations
    0 references
    periodic boundary value problems
    0 references
    mild solutions
    0 references
    existence
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references