Positive solutions for semilinear elliptic equations with critical weighted Hardy-Sobolev exponents (Q908223)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Positive solutions for semilinear elliptic equations with critical weighted Hardy-Sobolev exponents |
scientific article; zbMATH DE number 6538893
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Positive solutions for semilinear elliptic equations with critical weighted Hardy-Sobolev exponents |
scientific article; zbMATH DE number 6538893 |
Statements
Positive solutions for semilinear elliptic equations with critical weighted Hardy-Sobolev exponents (English)
0 references
3 February 2016
0 references
In this paper, the following semilinear elliptic problem \[ \begin{cases} -\operatorname{div}(|x|^{-2a}\nabla u)-\mu\frac{u}{|x|^{2(1+a)}}=\frac{|u|^{p-2}}{|x|^{bp}}u+f(x,u),\quad & x\in\Omega, \\ u= 0,\quad & x\in\partial\Omega\end{cases} \] is considered, where \(\Omega\subset\mathbb R^N\) is a bounded domain with smooth boundary \(\partial \Omega\), \(N\geq 3\), \(0\in\Omega\), \(0\leq a<\sqrt{\overline{\mu}}\), \(0\leq\mu<(\sqrt{\overline{\mu}}-a)^2\) with \(\overline{\mu}=(N-2)^2/4\), \(a\leq b<a+1\), and \(p=2N/(N-2(1+a-b))\) is the Hardy-Sobolev critical exponent. The existence result of positive solutions is established.
0 references
weighted Hardy-Sobolev exponents
0 references
mountain pass lemma
0 references
semilinear elliptic equation
0 references