Positive solutions for semilinear elliptic equations with critical weighted Hardy-Sobolev exponents (Q908223)

From MaRDI portal





scientific article; zbMATH DE number 6538893
Language Label Description Also known as
English
Positive solutions for semilinear elliptic equations with critical weighted Hardy-Sobolev exponents
scientific article; zbMATH DE number 6538893

    Statements

    Positive solutions for semilinear elliptic equations with critical weighted Hardy-Sobolev exponents (English)
    0 references
    0 references
    0 references
    3 February 2016
    0 references
    In this paper, the following semilinear elliptic problem \[ \begin{cases} -\operatorname{div}(|x|^{-2a}\nabla u)-\mu\frac{u}{|x|^{2(1+a)}}=\frac{|u|^{p-2}}{|x|^{bp}}u+f(x,u),\quad & x\in\Omega, \\ u= 0,\quad & x\in\partial\Omega\end{cases} \] is considered, where \(\Omega\subset\mathbb R^N\) is a bounded domain with smooth boundary \(\partial \Omega\), \(N\geq 3\), \(0\in\Omega\), \(0\leq a<\sqrt{\overline{\mu}}\), \(0\leq\mu<(\sqrt{\overline{\mu}}-a)^2\) with \(\overline{\mu}=(N-2)^2/4\), \(a\leq b<a+1\), and \(p=2N/(N-2(1+a-b))\) is the Hardy-Sobolev critical exponent. The existence result of positive solutions is established.
    0 references
    weighted Hardy-Sobolev exponents
    0 references
    mountain pass lemma
    0 references
    semilinear elliptic equation
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references