Realisierbarkeit von Darstellungen endlicher Gruppen in Einheitswurzelkörpern. (Realizability of representations of finite groups in cyclotomic fields) (Q909778)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Realisierbarkeit von Darstellungen endlicher Gruppen in Einheitswurzelkörpern. (Realizability of representations of finite groups in cyclotomic fields) |
scientific article; zbMATH DE number 4138019
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Realisierbarkeit von Darstellungen endlicher Gruppen in Einheitswurzelkörpern. (Realizability of representations of finite groups in cyclotomic fields) |
scientific article; zbMATH DE number 4138019 |
Statements
Realisierbarkeit von Darstellungen endlicher Gruppen in Einheitswurzelkörpern. (Realizability of representations of finite groups in cyclotomic fields) (English)
0 references
1990
0 references
The content of this paper is described in the author's summary: ``Let D: \(G\to GL(n,{\mathbb{C}})\) be an irreducible linear representation of a finite group G with the character \(\chi\). If D is realizable in \({\mathbb{Q}}(\xi_ m)\) and \({\mathbb{Q}}(\xi_{m'})\) we give a condition for the realizability of D in \({\mathbb{Q}}(\xi_{(m,m')})\). If the degree n is a prime \(\neq 2\), we show that D is realizable in \({\mathbb{Q}}(\xi_ f)\), where f is the conductor of the abelian extension \({\mathbb{Q}}(\chi)/{\mathbb{Q}}.''\) The problem was motivated by certain questions in the theory of Galois representations.
0 references
rationality questions
0 references
irreducible linear representation
0 references
finite group
0 references
character
0 references
realizability
0 references
conductor
0 references
Galois representations
0 references