On the properties of the strong Cesàro summability and strong convergence of series (Q909920)

From MaRDI portal





scientific article; zbMATH DE number 4138479
Language Label Description Also known as
English
On the properties of the strong Cesàro summability and strong convergence of series
scientific article; zbMATH DE number 4138479

    Statements

    On the properties of the strong Cesàro summability and strong convergence of series (English)
    0 references
    0 references
    1989
    0 references
    For a given series \(\sum^{\infty}_{k=0}a_ k\) let \(\sigma_ n^{(\alpha)}=(1/A_ n^{(\alpha)})\sum^{n}_{\nu =0}A^{(\alpha)}_{n-\nu}a_{\nu},\) where \(\alpha >-1\) and \(A_ n^{(\alpha)}=\left( \begin{matrix} n+\alpha \\ n\end{matrix} \right)\). The strong Cesàro summability \([C,\alpha]_{\lambda}\) to s \((\alpha >0\), \(\lambda >0)\) of \(\sum a_ k\) is defined by \(1/(n+1)\sum^{n}_{k=0}| \sigma_ k^{(\alpha -1)}- s|^{\lambda}=o(1),\) \(n\to \infty\). The absolute Cesàro summability \(| C,\alpha |_{\lambda}\) \((\alpha >-1\), \(\lambda\geq 1)\) of \(\sum a_ k\) is defined by \(\sum^{\infty}_{k=0}k^{\lambda - 1}| \sigma_ k^{(\alpha)}-\sigma^{(\alpha)}_{k- 1}|^{\lambda}<\infty.\) The author proves a lot of theorems concerning the relations between (C,\(\alpha)\), \([C,\alpha]_{\lambda}\) and \(| C,\alpha |_{\lambda}\) summabilities, which generalize the theorems of T. M. Flett, J. M. Hyslop, N. Tanovič-Miller, C. E. Winn, etc. The author gives further some applications of his results to orthogonal expansions.
    0 references
    absolute Cesàro summability
    0 references
    applications
    0 references
    orthogonal expansions
    0 references

    Identifiers