Perron's method for Hamilton-Jacobi equations (Q910925)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Perron's method for Hamilton-Jacobi equations |
scientific article; zbMATH DE number 4142546
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Perron's method for Hamilton-Jacobi equations |
scientific article; zbMATH DE number 4142546 |
Statements
Perron's method for Hamilton-Jacobi equations (English)
0 references
1987
0 references
In order to prove the existence of global weak solutions of the first order nonlinear scalar Hamilton-Jacobi equations \[ (1)\quad F(x,u,Du)=0\quad in\quad \Omega \subset {\mathbb{R}}^ n, \] the author presents a new simple direct method called Perron's method. This is an analogue for (1) to the well-known method of finding solutions of Laplace equation due to \textit{O. Perron} [Eine neue Behandlung der ersten Randwertaufgabe für \(\Delta u=0\), Math. Z. 18, 42-54 (1923)].
0 references
Hamilton-Jacobi equations
0 references
Perron's method
0 references
0 references
0.89869106
0 references
0.8905269
0 references
0.88898414
0 references
0.8869359
0 references
0 references
0.8801408
0 references
0.8794445
0 references
0.87875545
0 references
0.87820274
0 references