Some results on double Fourier-Stieltjes transform (Q910994)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Some results on double Fourier-Stieltjes transform |
scientific article; zbMATH DE number 4142740
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Some results on double Fourier-Stieltjes transform |
scientific article; zbMATH DE number 4142740 |
Statements
Some results on double Fourier-Stieltjes transform (English)
0 references
1989
0 references
For functions of bounded variation in the sense of Hardy and Krause in \(R\times R\), some results on the double Fourier-Stieltjes transform are obtained. The main result is the inequality \[ \begin{multlined} \int^{\infty,\infty}_{-\infty,-\infty} | \int^{\infty,\infty}_{-\infty,-\infty} \frac{\sin su}{s} \frac{\sin tv}{t} dg(u,v) |^2 ds dt\leq \\ \leq \int^{\infty,\infty}_{-\infty,-\infty} | \int^{\infty,\infty}_{-\infty,-\infty} \frac{e^{-i(su+tv)}} {st} dg(u,v) |^2 ds dt, \end{multlined} \] useful in the study of trigonometric series.
0 references
functions of bounded variation
0 references
double Fourier-Stieltjes transform
0 references