On \({\mathbb{Z}}_ p\)-extensions of real abelian fields (Q911647)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On \({\mathbb{Z}}_ p\)-extensions of real abelian fields |
scientific article; zbMATH DE number 4142153
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On \({\mathbb{Z}}_ p\)-extensions of real abelian fields |
scientific article; zbMATH DE number 4142153 |
Statements
On \({\mathbb{Z}}_ p\)-extensions of real abelian fields (English)
0 references
1989
0 references
The author intends to show that a result on \({\mathbb{Z}}_ p\)-extensions of real quadratic fields obtained by \textit{T. Fukuda} and \textit{K. Komatsu} [J. Number Theory 23, 238-242 (1986; Zbl 0593.12003)] can be extended in a real abelian case. Namely, let k be a finite abelian extension of rationals \({\mathbb{Q}}\) and p be an odd prime number splitting completely in k. Then, any \({\mathbb{Z}}_ p\)-extension K/k is cyclotomic. The author gives a sufficient condition for the Iwasawa invariant \(\lambda_ p(k)\) of k to vanish under the assumption \((h_ k,p)=1\) for the class number \(h_ k\) of k.
0 references
\(\lambda \) -invariant
0 references
cyclotomic extension
0 references
\({\mathbb{Z}}_ p\)-extensions
0 references
Iwasawa invariant
0 references
class number
0 references
0.95189124
0 references
0.93969667
0 references
0.9239096
0 references
0.9221891
0 references
0.91964984
0 references
0.91935486
0 references
0.91809374
0 references
0.9170642
0 references