A remark on the gamma function (Q912887)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A remark on the gamma function |
scientific article; zbMATH DE number 4145985
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A remark on the gamma function |
scientific article; zbMATH DE number 4145985 |
Statements
A remark on the gamma function (English)
0 references
1989
0 references
Let P denote the arithmetic function defined by \(P(n)=\prod_{k=1,...,n;(k,n)=1}\Gamma (k/n)\), where \(\Gamma\) is the Euler gamma function. The authors give an explicit formula for P(n) and establish an asymptotic formula with remainder term for the summatory function of log P(n). The motivation for the study of the function P arises from the relation log P(n)\(\sim \phi (n) \log \sqrt{2\pi}\) (n\(\to \infty)\), where \(\phi\) is the Euler totient function.
0 references
von Mangoldt function
0 references
Euler gamma function
0 references
asymptotic formula
0 references
Euler totient function
0 references
0.9226794
0 references
0.9214777
0 references
0.9214777
0 references