On the Kobayashi-Royden metric for ellipsoids (Q913042)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the Kobayashi-Royden metric for ellipsoids |
scientific article; zbMATH DE number 4146395
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the Kobayashi-Royden metric for ellipsoids |
scientific article; zbMATH DE number 4146395 |
Statements
On the Kobayashi-Royden metric for ellipsoids (English)
0 references
1991
0 references
Let \({\mathcal E}\) be an ellipsoid in \({\mathbb{C}}^ n\), symmetric about 0. If the Kobayashi indicatrix of \({\mathcal E}\) at 0 is biholomorphic to the unit ball of \({\mathbb{C}}^ n\), then so is \({\mathcal E}\). Equivalently: If the infinitesimal Kobayashi-Royden metric of \({\mathcal E}\) at 0 is Hermitian, then \({\mathcal E}\) is biholomorphic to the ball.
0 references
ellipsoid
0 references
Kobayashi indicatrix
0 references
biholomorphic to the unit ball
0 references
Kobayashi-Royden metric
0 references