Pointwise estimates for minimizers of some non-uniformly degenerate functionals (Q913224)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Pointwise estimates for minimizers of some non-uniformly degenerate functionals |
scientific article; zbMATH DE number 4146930
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Pointwise estimates for minimizers of some non-uniformly degenerate functionals |
scientific article; zbMATH DE number 4146930 |
Statements
Pointwise estimates for minimizers of some non-uniformly degenerate functionals (English)
0 references
1989
0 references
We prove Hölder regularity and the Harnack inequality for non-uniformly degenerate functionals of the type \(F(u,\Omega)=\int_{\Omega}F(x,Du)dx\). We adapt the techniques used by \textit{M. Giaquinta} and \textit{E. Giusti} [Acta Math. 148, 31-46 (1982; Zbl 0494.49031); Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1, 79-107 (1984; Zbl 0541.49008)], \textit{E. DiBenedetto} and \textit{N. S. Trudinger} [ibid., 295-308 (1984; Zbl 0565.35012)], and \textit{G. Modica} [Ann. Mat. Pura Appl., IV. Sér. 142, 121-143 (1985; Zbl 0596.49008)], by equipping \(R^ n\) with a metric constructed in order to take into account the special non-uniformly degeneration of F.
0 references
Hölder regularity
0 references
Harnack inequality
0 references
non-uniformly degenerate functionals
0 references
0 references
0 references