Die Varietät der auflösbaren Ternare der Ordnung 2. (The variety of soluble Steiner ternary systems of order 2) (Q913246)

From MaRDI portal





scientific article; zbMATH DE number 4146967
Language Label Description Also known as
English
Die Varietät der auflösbaren Ternare der Ordnung 2. (The variety of soluble Steiner ternary systems of order 2)
scientific article; zbMATH DE number 4146967

    Statements

    Die Varietät der auflösbaren Ternare der Ordnung 2. (The variety of soluble Steiner ternary systems of order 2) (English)
    0 references
    0 references
    1989
    0 references
    Associated to Steiner systems is an algebra T with a ternary operation q satisfying (a) \(q(x,y,z)=q(x,z,y)=q(z,x,y)\); (b) \(q(x,x,y)=y\); (c) \(q(x,y,q(x,y,z))=z\). It is called Boolean if (d) \(q(a,x,q(a,y,z))=q(x,y,z)\). The algebra is soluble of order n if there is a descending Boolean series \(1=\theta_ 0\supseteq \theta_ 1\supseteq...\supseteq \theta_ n=0\) of congruence relations. The variety of soluble algebras of length at most n is denoted by \(\alpha_ n\). A basis for the latter is found when \(n=2\).
    0 references
    Steiner system
    0 references
    variety
    0 references
    Boolean algebra
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references