A theorem of Pitman type for simple random walks on \(Z^ d\) (Q913376)

From MaRDI portal





scientific article; zbMATH DE number 4147243
Language Label Description Also known as
English
A theorem of Pitman type for simple random walks on \(Z^ d\)
scientific article; zbMATH DE number 4147243

    Statements

    A theorem of Pitman type for simple random walks on \(Z^ d\) (English)
    0 references
    0 references
    0 references
    1989
    0 references
    Let \(S_ n\) be a simple random walk on \({\mathbb{Z}}^ d\) starting at 0, \(S_ n^{(i)}\) its i-th component, \(M_ n^{(i)}\) the minimum of \(S_ k^{(i)}\), \(0\leq k\leq n\). Then \[ S_ n-2M_ n=(S_ n^{(1)}- 2M_ n^{(1)},...,S_ n^{(d)}-2M_ n^{(d)\quad}) \] is a Markov chain on \({\mathbb{Z}}^ d_+\) \((=set\) of points with non-negative integral coordinates).
    0 references
    Pitman's theorem
    0 references
    random walk
    0 references

    Identifiers