Poisson kernel and multilinear generating functions of some orthogonal polynomials (Q914010)

From MaRDI portal





scientific article; zbMATH DE number 4148548
Language Label Description Also known as
English
Poisson kernel and multilinear generating functions of some orthogonal polynomials
scientific article; zbMATH DE number 4148548

    Statements

    Poisson kernel and multilinear generating functions of some orthogonal polynomials (English)
    0 references
    0 references
    1990
    0 references
    Many of the basic orthogonal polynomials are specializations of \[ \Omega_ n(x;a,b| q)=\sum \left[ \begin{matrix} n\\ r\end{matrix} \right](a;q)_ r(b;q)_{n-r}x^ r. \] The authors find an identity for the multilinear generating function \[ \sum \frac{\Omega_{N+s}(x;a,b| q)}{(ab)_{N+s}}\prod^{k}_{j=1}\frac{\Omega_{n_ j+m_ j}(y_ j;c_ j,d_ j| q)z_ j^{n_ j}}{(q)_{n_ j}}, \] where the sum is over \(n_ 1,...,n_ k\geq 0\) and \(N=n_ 1+...+n_ k\). Many classical results on generating functions are then derived as special cases.
    0 references
    q-random walk polynomials
    0 references
    q-ultraspherical polynomials
    0 references
    Al-Salam Chihara polynomials
    0 references
    multilinear generating function
    0 references

    Identifiers