Initial boundary value problem for one class of system of multidimensional inhomogeneous GBBM equations (Q914076)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Initial boundary value problem for one class of system of multidimensional inhomogeneous GBBM equations |
scientific article; zbMATH DE number 4148771
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Initial boundary value problem for one class of system of multidimensional inhomogeneous GBBM equations |
scientific article; zbMATH DE number 4148771 |
Statements
Initial boundary value problem for one class of system of multidimensional inhomogeneous GBBM equations (English)
0 references
1987
0 references
\textit{J. A. Goldstein} and \textit{B. J. Wichnoski} [Nonlinear Anal., Theory Methods Appl. 4, 665-675 (1980; Zbl 0447.35068)] and \textit{F. Bampi} and \textit{A. Morro} [J. Math. Phys. 23, 2312-2321 (1982; Zbl 0502.73019)] studied the generalized Benjamin-Bona-Mahony (GBBM) equation in higher dimensions \[ (1)\quad u_ t-\Delta u_ t+\sum^{n}_{i=1}(\partial /\partial x_ i)\text{grad} \phi (u)=f(u), \] \[ u|_{t=0}=u_ 0(x),\quad x\in \Omega;\quad u|_{\partial \Omega}=0,\quad t\geq 0, \] where \(u(x,t)=(u_ 1(x,t),...,u_ N(x,t))\), \(f(u)=(f_ 1(u_ 1,...,u_ N),...,f_ N(u_ 1,...,u_ N))\), \(\phi (u)=\phi (u_ 1,...,u_ N).\) In this paper, using the Galerkin approximation method, the author proves the existence and the uniqueness of the global solution of the initial boundary value problem for the system of GBBM equations (1) and studies the regularity and ``blow up'' of the solution for (1).
0 references
generalized Benjamin-Bona-Mahony equation
0 references
existence
0 references
uniqueness
0 references
global solution
0 references
0.9254722
0 references
0.89402485
0 references
0.8885368
0 references
0.8869349
0 references