La conjecture de Baum-Connes pour un feuilletage sans holonomie de codimension un sur une variété fermée. (The Baum-Connes conjecture for a foliation without holonomy of codimension one in a closed manifold) (Q914197)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: La conjecture de Baum-Connes pour un feuilletage sans holonomie de codimension un sur une variété fermée. (The Baum-Connes conjecture for a foliation without holonomy of codimension one in a closed manifold) |
scientific article; zbMATH DE number 4149164
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | La conjecture de Baum-Connes pour un feuilletage sans holonomie de codimension un sur une variété fermée. (The Baum-Connes conjecture for a foliation without holonomy of codimension one in a closed manifold) |
scientific article; zbMATH DE number 4149164 |
Statements
La conjecture de Baum-Connes pour un feuilletage sans holonomie de codimension un sur une variété fermée. (The Baum-Connes conjecture for a foliation without holonomy of codimension one in a closed manifold) (English)
0 references
1989
0 references
The Baum-Connes conjecture concerning the existence of an isomorphism between the topological and analytical K-theories of the space of leaves of a foliation \({\mathcal F}\) is reproven for the case where codim \({\mathcal F}=1\), and \({\mathcal F}\) is without holonomy. This result was first proven for the \(C^{\infty}\) case by \textit{T. Natsume} [Foliations, Proc. Symp., Tokyo 1983, Adv. Stud. Pure Math. 5, 15-27 (1985; Zbl 0658.57015)]. The present new proof holds also for \(C^ 0\)-foliations, and it is based on the construction of a classifying foliation \({\mathcal F}_ 0\) on a torus.
0 references
Baum-Connes conjecture
0 references
analytical K-theories
0 references
foliation
0 references
holonomy
0 references
classifying foliation
0 references
torus
0 references