La conjecture de Baum-Connes pour un feuilletage sans holonomie de codimension un sur une variété fermée. (The Baum-Connes conjecture for a foliation without holonomy of codimension one in a closed manifold) (Q914197)

From MaRDI portal





scientific article; zbMATH DE number 4149164
Language Label Description Also known as
English
La conjecture de Baum-Connes pour un feuilletage sans holonomie de codimension un sur une variété fermée. (The Baum-Connes conjecture for a foliation without holonomy of codimension one in a closed manifold)
scientific article; zbMATH DE number 4149164

    Statements

    La conjecture de Baum-Connes pour un feuilletage sans holonomie de codimension un sur une variété fermée. (The Baum-Connes conjecture for a foliation without holonomy of codimension one in a closed manifold) (English)
    0 references
    1989
    0 references
    The Baum-Connes conjecture concerning the existence of an isomorphism between the topological and analytical K-theories of the space of leaves of a foliation \({\mathcal F}\) is reproven for the case where codim \({\mathcal F}=1\), and \({\mathcal F}\) is without holonomy. This result was first proven for the \(C^{\infty}\) case by \textit{T. Natsume} [Foliations, Proc. Symp., Tokyo 1983, Adv. Stud. Pure Math. 5, 15-27 (1985; Zbl 0658.57015)]. The present new proof holds also for \(C^ 0\)-foliations, and it is based on the construction of a classifying foliation \({\mathcal F}_ 0\) on a torus.
    0 references
    Baum-Connes conjecture
    0 references
    analytical K-theories
    0 references
    foliation
    0 references
    holonomy
    0 references
    classifying foliation
    0 references
    torus
    0 references
    0 references

    Identifiers