Ein elementarer Beweis eines Faktorisierungssatzes für ganze Funktionen. (An elementary proof of a factorization theorem for entire functions) (Q914883)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Ein elementarer Beweis eines Faktorisierungssatzes für ganze Funktionen. (An elementary proof of a factorization theorem for entire functions) |
scientific article; zbMATH DE number 4150594
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Ein elementarer Beweis eines Faktorisierungssatzes für ganze Funktionen. (An elementary proof of a factorization theorem for entire functions) |
scientific article; zbMATH DE number 4150594 |
Statements
Ein elementarer Beweis eines Faktorisierungssatzes für ganze Funktionen. (An elementary proof of a factorization theorem for entire functions) (English)
0 references
1989
0 references
Let f and g be transcendental entire functions. \textit{M. Ozawa} [Kōdai Math. Sem. Reports 20, 159-162 (1968; Zbl 0157.395)] and \textit{F. Gross} [Trans. Am. Math. Soc. 131, 215-222 (1968; Zbl 0159.367)] proved that if the composite function \(f\circ g\) has finite order, then it does not have a finite Picard exceptional value. The author gives another proof of this theorem.
0 references
entire function
0 references
factorization
0 references
prime function
0 references
entire functions
0 references
Picard exceptional value
0 references
0.8530576
0 references
0.85061395
0 references
0.8219673
0 references
0.82163876
0 references
0.82030356
0 references
0.8202846
0 references
0.81968325
0 references
0.8172125
0 references