Convergence of the pseudospectral method for the Ginzburg-Landau equation (Q915008)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Convergence of the pseudospectral method for the Ginzburg-Landau equation |
scientific article; zbMATH DE number 4150943
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Convergence of the pseudospectral method for the Ginzburg-Landau equation |
scientific article; zbMATH DE number 4150943 |
Statements
Convergence of the pseudospectral method for the Ginzburg-Landau equation (English)
0 references
1990
0 references
The convergence of the pseudospectral (Fourier) method for the one- dimensional Ginzburg-Landau wave equations \[ iA_ t+(1-ic_ 0)A_{xx}=i\frac{c_ 0}{c_ 1}A-(1+i\frac{c_ 0}{c_ 1})| A|^ 2A \] is established for the parameter regimes \(c_ 0,c_ 1>0\) and \(c_ 0>0\), \(c_ 1<0\). The rate of convergence depends on the smoothness of the initial data.
0 references
pseudospectral method
0 references
convergence
0 references
Ginzburg-Landau wave equations
0 references