A sufficient condition for a graph to contain two disjoint Hamiltonian cycles (Q915741)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A sufficient condition for a graph to contain two disjoint Hamiltonian cycles |
scientific article; zbMATH DE number 4152418
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A sufficient condition for a graph to contain two disjoint Hamiltonian cycles |
scientific article; zbMATH DE number 4152418 |
Statements
A sufficient condition for a graph to contain two disjoint Hamiltonian cycles (English)
0 references
1988
0 references
There is proved the following main result which generalizes Ore's theorem: Let G be a graph with n vertices and let \(d_ G(x)\) denote the degree of the vertex x in G; if \(n\geq 5\) and \(d_ G(x)+d_ G(y)\geq n+2\) holds for all nonadjacent vertices \(x\neq y\) of G, then G contains two disjoint Hamiltonian cycles. The proof is based on Ore's theorem and three lemmata.
0 references
graph
0 references
disjoint Hamiltonian cycles
0 references
0.9288097
0 references