Lucas' theorem for prime powers (Q916686)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Lucas' theorem for prime powers |
scientific article; zbMATH DE number 4154518
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Lucas' theorem for prime powers |
scientific article; zbMATH DE number 4154518 |
Statements
Lucas' theorem for prime powers (English)
0 references
1990
0 references
Lucas' theorem on binomial coefficients states that \(\left( \begin{matrix} A\\ B\end{matrix} \right)\equiv \left( \begin{matrix} a_ r\\ b_ r\end{matrix} \right)...\left( \begin{matrix} a_ 1\\ b_ 1\end{matrix} \right)\left( \begin{matrix} a_ 0\\ b_ 0\end{matrix} \right)(mod p)\), where p is a prime and \(A=a_ rp^ r+...+a_ 1p+a_ 0\), \(B=b_ rp^ r+...+b_ 1p+b_ 0\) are the p-adic expansions of A and B. The authors show that a similar formula holds modulo \(p^ s\) with \(s\geq 2\) where the product involves a slightly modified binomial coefficient evaluated on blocks of s digits.
0 references
congruence
0 references
binomial coefficients
0 references
0.9364288
0 references
0.8796885
0 references
0.8795564
0 references
0 references