Lucas' theorem for prime powers (Q916686)

From MaRDI portal





scientific article; zbMATH DE number 4154518
Language Label Description Also known as
English
Lucas' theorem for prime powers
scientific article; zbMATH DE number 4154518

    Statements

    Lucas' theorem for prime powers (English)
    0 references
    0 references
    0 references
    1990
    0 references
    Lucas' theorem on binomial coefficients states that \(\left( \begin{matrix} A\\ B\end{matrix} \right)\equiv \left( \begin{matrix} a_ r\\ b_ r\end{matrix} \right)...\left( \begin{matrix} a_ 1\\ b_ 1\end{matrix} \right)\left( \begin{matrix} a_ 0\\ b_ 0\end{matrix} \right)(mod p)\), where p is a prime and \(A=a_ rp^ r+...+a_ 1p+a_ 0\), \(B=b_ rp^ r+...+b_ 1p+b_ 0\) are the p-adic expansions of A and B. The authors show that a similar formula holds modulo \(p^ s\) with \(s\geq 2\) where the product involves a slightly modified binomial coefficient evaluated on blocks of s digits.
    0 references
    congruence
    0 references
    binomial coefficients
    0 references
    0 references

    Identifiers