Ring class fields modulo 8 of \({\mathbb{Q}}(\sqrt{-m})\) and the quartic character of units of \({\mathbb{Q}}(\sqrt{m})\) for m\(\equiv 1\) mod 8 (Q917593)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Ring class fields modulo 8 of \({\mathbb{Q}}(\sqrt{-m})\) and the quartic character of units of \({\mathbb{Q}}(\sqrt{m})\) for m\(\equiv 1\) mod 8 |
scientific article; zbMATH DE number 4156572
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Ring class fields modulo 8 of \({\mathbb{Q}}(\sqrt{-m})\) and the quartic character of units of \({\mathbb{Q}}(\sqrt{m})\) for m\(\equiv 1\) mod 8 |
scientific article; zbMATH DE number 4156572 |
Statements
Ring class fields modulo 8 of \({\mathbb{Q}}(\sqrt{-m})\) and the quartic character of units of \({\mathbb{Q}}(\sqrt{m})\) for m\(\equiv 1\) mod 8 (English)
0 references
1989
0 references
Let m be a positive squarefree rational integer. Let \(\epsilon_ m\) be the fundamental unit of \({\mathbb{Q}}(\sqrt{m})\) and suppose \(N_{{\mathbb{Q}}(\sqrt{m})/{\mathbb{Q}}}(\epsilon_ m)=-1\). In the case when \(m\equiv 1 (mod 8)\) and the ideal class group of \({\mathbb{Q}}(\sqrt{-m})\) has only one invariant divisible by 4, the authors determine the quartic symbol \((\epsilon_ m/P)_ 4\), where P is a prime ideal of \({\mathbb{Q}}(\sqrt{m})\) dividing a prime p with \((-1/p)=(m/p)=1\).
0 references
quadratic symbol
0 references
ring class fields
0 references
fundamental unit
0 references
quartic symbol
0 references