The spectral norm of a nonnegative matrix (Q917654)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The spectral norm of a nonnegative matrix |
scientific article; zbMATH DE number 4156667
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The spectral norm of a nonnegative matrix |
scientific article; zbMATH DE number 4156667 |
Statements
The spectral norm of a nonnegative matrix (English)
0 references
1990
0 references
The author proves that for any matrix \(A=(a_{ij})\) with \(| A| =(| a_{ij}|)\) it holds that \(\| | A| \|_ 2=\min \{r_ 1(B)\cdot c_ 1(C):\) \(B\circ C=A\}\geq \| A\|_ 2\) and determines the case of equality and the conditions of the uniqueness of minimizers, where \(c_ 1(A)=\max_{j}(\sum_{i}| a_{ij}|^ 2)^{1/2}\) and \(r_ 1(A)=\max_{i}(\sum_{j}| a_{ij}|^ 2)^{1/2}\).
0 references
spectral norm
0 references
nonnegative matrix
0 references
0 references
0.9290192
0 references
0.91934323
0 references
0.91845703
0 references
0.9176735
0 references
0.91634506
0 references
0.9161672
0 references
0.9159693
0 references