Charakterisierungen von nirgends differenzierbaren Weierstraß- Funktionen durch Replikativität. (Characterization of nowhere differentiable Weierstraß functions by replicativity) (Q917726)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Charakterisierungen von nirgends differenzierbaren Weierstraß- Funktionen durch Replikativität. (Characterization of nowhere differentiable Weierstraß functions by replicativity) |
scientific article; zbMATH DE number 4156821
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Charakterisierungen von nirgends differenzierbaren Weierstraß- Funktionen durch Replikativität. (Characterization of nowhere differentiable Weierstraß functions by replicativity) |
scientific article; zbMATH DE number 4156821 |
Statements
Charakterisierungen von nirgends differenzierbaren Weierstraß- Funktionen durch Replikativität. (Characterization of nowhere differentiable Weierstraß functions by replicativity) (English)
0 references
1990
0 references
For a prime number p, consider the function \(S_ p(x)=\sum^{\infty}_{n=0}(1/p^ n)\sin (2\pi p^ nx).\) It is shown that \(S_ p\) can be characterized as the only continuous solution of a system of functional equations.
0 references
replicative function
0 references
Weierstraß functions
0 references
functional equations
0 references