Field extensions and isotropic subspaces in symplectic geometry (Q917906)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Field extensions and isotropic subspaces in symplectic geometry |
scientific article; zbMATH DE number 4157366
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Field extensions and isotropic subspaces in symplectic geometry |
scientific article; zbMATH DE number 4157366 |
Statements
Field extensions and isotropic subspaces in symplectic geometry (English)
0 references
1990
0 references
Let \(L/k\) be a finite field extension, \((V,B)\) a symplectic space over \(L\), and \(Sp_ L(V)\) the corresponding symplectic group. For any nonzero \(k\)- linear functional \(\phi: L\to k\) consider the \(k\)-valued symplectic form \(B'=\phi \circ B\) on V. \(Sp_ L(V)\) acts on \(B'\)-isotropic \(k\)-subspaces in \(V\). This paper determines the number of orbits of \(d\)-dimensional such subspaces for \(d\leq \dim_ kV\). This number turns out to be finite if \([L:k]=2\), finite only for \(d=0,1\) or \(1/2 \dim_ kV\) if \([L:k]=3\), whereas for \([L:k]\geq 4\) it is always infinite if the fields are infinite. In the finite cases, the precise structure of the orbits is determined.
0 references
symplectic geometry
0 references
isotropic subspace
0 references
orbit
0 references
field extension
0 references
symplectic group
0 references
0.9083579
0 references
0.9019016
0 references
0.8985517
0 references
0.8915197
0 references
0.8911276
0 references
0 references